p - [a, b]-paracompactness in bitopological spaces

Fuad A. Abushaheen*

Basic Science Department Middle East University Amman Jordan Fshaheen@meu.edu.jo

Hasan Z. Hdeib

Department of Mathematics
University of Jordan
Amman
Jordan
zahdeib@ju.edu.jo

Abstract. In this paper, we introduce a new definition of paracompactness in bitopological spaces, we give a equivalent statements for this notation. Finally a product theorem is given.

Keywords: p-[a,b]-paracompact space, p-locally-a family, s-[a,b] compact space.

1. Introduction

In 1963, Kelly [4] introduced the concept of bitopological space. A set X with two topologies τ_1, τ_2 is a bitopological space, and denoted by $X = (X, \tau_1, \tau_2)$. A cover \mathcal{U} of a bitopological space $X = (X, \tau_1, \tau_2)$ is called $\tau_1 \tau_2$ — open cover (family) [4], if $\mathcal{U} \subseteq \tau_1 \cup \tau_2$, and it is called p— open cover (family) [4],if it is $\tau_1 \tau_2$ — open cover and contains at least one nonempty member of τ_1 and one nonempty member of τ_1 . A space $X = (X, \tau_1, \tau_2)$ is called s - [a, b] - (p - [a, b] -) compact space [1], if every $\tau_1 \tau_2 - (p -)$ open cover of X with cardinality $\leq b$ has a subcover with cardinality $\leq a$.

For a $\tau_1\tau_2$ – open covers \mathcal{U} , \mathcal{V} in a bitopological space $X=(X,\tau_1,\tau_2)$, \mathcal{U} is called a parallel refinement of \mathcal{V} [2], if for each $U \in \mathcal{U} \cap \tau_i$ is contained in some $V \in \mathcal{V} \cap \tau_i$ for i=1,2.

In this paper the letters a, b are infinite regular cardinals, ω_0, ω_1 stands for the cardinality of \mathbb{N}, \mathbb{R} , respectively. If $X = (X, \tau_1, \tau_2)$ is a bitopological space and $A \subseteq X$, $int_{\tau_i}(A)$, \overline{A}^{τ_i} denote the interior and the closure of A in τ_i , respectively for i = 1, 2. When $X = (X, \tau_1, \tau_2)$ has a topological property Q this means that both τ_1 and τ_2 have this property. For the concepts not defined here, see [3] and [5].

^{*.} Corresponding author

2. Preliminaries

Definition 2.1. A family \mathcal{A} of subsets of a bitopological space $X = (X, \tau_1, \tau_2)$ is called p- locally-a family, if for all $x \in X$ there exists a τ_1 - open set U containing x such that U meets less than a members of $\mathcal{A} \cap \tau_2$ or there exists a τ_2 - open set V containing x such that V meets less than a members of $\mathcal{A} \cap \tau_1$.

Definition 2.2. A space $X = (X, \tau_1, \tau_2)$ is called p - [a, b] – paracompact if every p – open cover of X with cardinality $\leq b$ has a p – locally – a p – open parallel refinement.

Theorem 2.3. Let $X = (X, \tau_1, \tau_2)$ be a bitopological spaces. Then X is p - [a, b] paracompact if and only if each τ_j open cover of a τ_i proper closed subset of X with cardinality $\leq b$ has τ_i locally -a τ_j open parallel refinement for $i \neq j; i, j = 1, 2$.

Proof. (\Rightarrow) Let F be a τ_i -closed proper subset of X. Let $\mathcal{U} = \{U_{\alpha} | \alpha \in \Delta\}$ be a τ_j -open cover of F with $|\Delta| \leq b$. Now $\{U_{\alpha} | \alpha \in \Delta\} \cup \{X - F\}$ is p-open cover of X, but X is p - [a, b]-paracompact, so there exists a p-open parallel refinement

$$\mathcal{V} = \{V_{\alpha} | \alpha \in \Delta^* \subseteq \Delta\} \bigcup \{W_{\gamma} | \gamma \in \Gamma\}.$$

Now $\{V_{\alpha}|\alpha\in\Delta^*\subseteq\Delta\}$ is a τ_i -locally-a τ_j - open refinement, for $i\neq j; i,j=1,2$.

(\Leftarrow) Let $\mathcal{U} = \{W_{\alpha} | \alpha \in \Delta\} \cup \{V_{\gamma} | \gamma \in \Gamma\}$ be a p-open cover of X with $|\Delta \cup \Gamma| \leq b$ where $W_{\alpha} \in \tau_i$ for all $\alpha \in \Delta$ and $V_{\gamma} \in \tau_j$ for all $\gamma \in \Gamma$, for $i \neq j; i, j = 1, 2$. So we have the following cases:

Case (i) If $\bigcup_{\gamma \in \Gamma} V_{\gamma} = X$, then take $\alpha_0 \in \Delta$ such that $W_{\alpha_0} \neq \phi$. Consider the set $F = X - W_{\alpha_0}$, then F is a proper τ_i – closed subset of X and $\{V_{\gamma} | \gamma \in \Gamma\}$ is a τ_j – open cover of F with $|\Delta| \leq b$, then F has a τ_j – open τ_i – locally a – refinement

$$\mathcal{V}^* = \{V_{\lambda}^* | \lambda \in \Lambda\}.$$

Finally the family

$$\mathcal{U}^* = \mathcal{V}^* \cup \{W_{\alpha_0}\}$$

is the required p- locally -a p- open parallel refinement.

Case (ii) If $\bigcup_{\gamma \in \Gamma} V_{\gamma} \neq X$, then

$$E_1 = X - \bigcup_{\gamma \in \Gamma} V_{\gamma}$$

is a τ_i – closed subset of X, and

$$E_1 \subseteq \bigcup_{\alpha \in \Delta} W_{\alpha},$$

so $\{W_{\alpha} | \alpha \in \Delta\}$ has τ_i open τ_j locally -a parallel refinement

$$\mathcal{W}^* = \{ W_{\lambda}^* | \lambda \in \Lambda \},\,$$

if $\bigcup_{\lambda \in \Lambda} W_{\lambda}^* = X$, we are done. if not let

$$E_2 = X - \bigcup_{\lambda \in \Lambda} W_{\lambda}^*,$$

then E_2 is τ_i – closed and hence there exists a τ_j – open τ_i – locally –a refinement

$$\mathcal{V}^* = \{ V_{\omega}^* | \omega \in \Omega \}.$$

Finally the family

$$\mathcal{U}^* = \mathcal{V}^* \cup \mathcal{W}^*$$

is p- locally -a p- open parallel refinement, hence the result.

Theorem 2.4. Every $p - [\omega_0, \infty] - paracompact \ p - T_2 - bitopological space <math>X = (X, \tau_1, \tau_2)$ is $p - T_4$.

Proof. Let E and F be disjoint closed sets such that E is a τ_2 -closed and F is a τ_1 -closed. Let $e \in E$, since X is $p-T_2$ -space, for each $f \in F$ there exists a τ_1 -open set U_f and a τ_2 -open set V_f such that $e \in U_f$ and $f \in V_f$ with $U_f \cap V_f = \phi$.

Let

$$\mathcal{V} = \{V_f | f \in F\} \bigcup \{X - F\},\$$

then \mathcal{V} is a p- open cover of X, and hence there exists a p- locally $-\omega_0$ p- open parallel refinement \mathcal{V}^* such that if $V \in \mathcal{V}^*$ and $V \cap F \neq \phi$, so we have $V \in \tau_2$. Now let

$$V_e = \bigcup \{V | V \in \mathcal{V}^* \text{ and } V \cap F \neq \phi\},$$

then V_e is τ_2- open and $F\subseteq V_e$. Let U be a τ_1- open set containing e that intersects $<\omega_0$ of \mathcal{V}^* say $V_1,V_2,...,V_n$ and $V_k\subseteq V_{f_k},1\leq k\leq n$. Let $U_e=U\cap U_{f_1}\cap U_{f_2}\cap\ldots\cap U_{f_n}$. Now $e\in U_e$ and $F\subseteq V_e$ with $U_e\cap V_e=\phi$, hence X is $p-T_3$.

Now let

$$\mathcal{U} = \{U_e | e \in E\} \cup \{X - E\},\$$

then \mathcal{U} is a p- open cover of X, so there exists a p- locally $-\omega_0$ p-open parallel refinement \mathcal{U}^* , notice that if $U^* \in \mathcal{U}^*$ and $U^* \cap E \neq \phi$, then $U^* \in \tau_1$. Let

$$W = \bigcup \{U^* | U^* \in \mathcal{U}^* \text{ and } U^* \cap E \neq \emptyset\},$$

then W is a τ_1 - open and $E \subseteq W$, now for each $f \in F$ there exists τ_2 - open set U_f^* that intersects $<\omega_0$ of \mathcal{U}^* say $U_1^*, U_2^*, \ldots, U_m^*$. Now let $U_{e_s} \in \mathcal{U}^*$ with $U_s^* \subseteq U_{e_s}$ for $s=1,2,\ldots,m$ and let $U_f=U_f^* \cap Ve_1 \cap Ve_2 \cap \ldots \cap Ve_m$, let $V=\bigcup \{U_f|f\in F\}$. Then $V\in \tau_2$, $F\subseteq V$ and $W\cap F=\phi$, hence X is $p-T_4$.

3. $p - [\omega_0, \omega_1]$ -paracompact space

Definition 3.1. A family \mathcal{A} of subsets of a bitopological space $X = (X, \tau_1, \tau_2)$ is called p-point-a family if for all $x \in X$, x meets < a of $\mathcal{A} \cap \tau_i$, i = 1 or 2.

Lemma 3.2. If $X = (X, \tau_1, \tau_2)$ is normal, p- normal space, then for each p-open p-point $-\omega_0$ cover \mathcal{G} with $|\mathcal{G}| < \omega_1$ has a parallel refinement \mathcal{V} such that $\overline{V_1}^{\tau_i} \cup \overline{W_1}^{\tau_j} \subseteq G$ where $V_1, W_1 \in \mathcal{V} \cap \tau_i$ for some $G \in \mathcal{G} \cap \tau_i, i \neq j; i, j = 1, 2$.

Proof. Let $\mathcal{G} = \{G_k | k \in \Delta, |\Delta| < \omega_1\}$ be a p-open p-point- ω_0 of X, write $\Delta = \{1, 2, \ldots\}$.

Let

$$F_1^i = X - \bigcup_{k>1} (G_k \cap \tau_i),$$

and

$$F_1^j = X - \bigcup_{k>1} (G_k \cap \tau_j),$$

then F_1^i is a τ_i closed and F_1^j is a τ_j closed for $i \neq j; i, j = 1, 2$. Now let

$$F_1 = F_1^i \cup F_1^j,$$

then

$$F_1^i \subseteq F_1 \subseteq G_1$$

and

$$F_1^j \subseteq F_1 \subseteq G_1$$
.

Without loss of generality assume that G_1 is a τ_i -open, since X is normal and by [6], there exists τ_i -open sets V_1^i, W_1^i such that

$$F_1^i \subseteq V_1^i \subseteq \overline{V_1^i}^{\tau_i} \subseteq G_1$$

and

$$F_1^j \subseteq W_1^i \subseteq \overline{W_1^i}^{\tau_j} \subseteq G_1$$
,

so

$$F_1 \subseteq \overline{V_1^i}^{\tau_i} \cup \overline{W_1^i}^{\tau_j} \subseteq G_1$$
, for $i \neq j; i, j = 1, 2$.

Let

$$V_1 = V_1^i \cup W_1^i$$

and

$$F_{\alpha}^{i} = X - \big(\bigcup_{\beta < \alpha} V_{\beta}\big) \cup \big(\bigcup_{\gamma > \alpha} (G_{\gamma} \cap \tau_{i})\big),$$

$$F_{\alpha}^{j} = X - \big(\bigcup_{\beta < \alpha} int_{\tau_{j}}(V_{\beta})\big) \cup \big(\bigcup_{\gamma > \alpha} (G_{\gamma} \cap \tau_{j})\big), i \neq j; i, j = 1, 2,$$

and $F_{\alpha} = F_{\alpha}^{i} \cup F_{\alpha}^{j}$. Again without loss of generality assume G_{α} is a τ_{i} -open, so

$$F_{\alpha}^{i} \cup F_{\alpha}^{j} \subseteq G_{\alpha}$$

and hence there exists τ_i open sets $V^i_{\alpha}, W^i_{\alpha}$ such that

$$F_{\alpha}^{i} \subseteq V_{\alpha}^{i} \subseteq \overline{V_{\alpha}^{i}}^{\tau_{i}} \subseteq G_{\alpha},$$

$$F_{\alpha}^{j} \subseteq W_{\alpha}^{i} \subseteq \overline{W_{\alpha}^{i}}^{\tau_{j}} \subseteq G_{\alpha},$$

and

$$F_{\alpha} \subseteq \overline{V_{\alpha}^{i}}^{\tau_{i}} \cup \overline{W_{\alpha}^{i}}^{\tau_{j}} \subseteq G_{\alpha}, i \neq j; i, j = 1, 2.$$

Let $V_{\alpha} = V_{\alpha}^{i} \cup W_{\alpha}^{i}$, then $\mathcal{V} = \{V_{\alpha} | \alpha \in \Delta\}$ is a p-open p-point- ω_{0} parallel refinement of X. For instance, let $x \in X$ x meets $< \omega_{0}$ of $\mathcal{G} \cap \tau_{i}$ for i = 1, 2 say $G_{\alpha_{1}}^{i}, G_{\alpha_{2}}^{i}, \ldots, G_{\alpha_{n}}^{i}$, let $\alpha = \max\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\}$. Now $x \notin G_{\alpha}$ for any $\gamma > \alpha$ and if $x \notin V_{\beta}$ for any $\beta < \alpha, V_{\beta} \in \tau_{i}, x \in F_{\alpha} \subseteq V_{\alpha}$, hence $x \in V_{\beta}$ for some $\beta \leq \alpha$, therefore \mathcal{V} is a p-point- ω_{0} parallel refinement of X.

Theorem 3.3. For a normal, p-normal bitopological space $X = (X, \tau_1, \tau_2)$. The following are equivalent:

- (i) X is $p [\omega_0, \omega_1] paracompact$,
- (ii) Every p-open cover of X has a p-point- ω_0 refinement,
- (iii) Every p-open cover \mathcal{U} of X with cardinality $< \omega_1$ has a parallel refinement \mathcal{V} such that for $V_1, W_1 \in \mathcal{V} \cap \tau_i$, we have $\overline{V_1}^{\tau_i} \cup \overline{W_1}^{\tau_j} \subseteq U$ for some $U \in \mathcal{U} \cap \tau_i, i \neq j; i, j = 1, 2$,
- (iv) Given a decreasing sequence of a p-closed family $\mathcal{F} = \{F_k | k \in \Delta\}$ with $\bigcap_{k \in \Delta} F_k = \phi$, there exists a sequence of p- open family $\mathcal{G} = \{G_k | k \in \Delta\}$ with $\bigcap_{k \in \Delta} G_k = \phi$, such that $F_k^i \subseteq G_k^i$ and $F_k^i \subseteq G_k^j$, where F_k^i is a τ_i -closed in \mathcal{F} , $G_k^i \in \mathcal{G} \cap \tau_i$ and $G_k^j \in \mathcal{G} \cap \tau_j$, $i \neq j; i, j = 1, 2$,
- (v) Given a decreasing sequence of a p-closed family $\mathcal{F} = \{F_k | k \in \Delta\}$ with $\bigcap_{k \in \Delta} F_k = \phi$, there exists a sequence of p-closed (G_δ) family $\mathcal{A} = \{A_k | k \in \Delta\}$ with $\bigcap_{k \in \Delta} A_k = \phi$, and $F_k \subseteq A_k$.

Proof. $(i) \rightarrow (ii)$ trivial.

 $(ii) \to (iii)$ Let $\mathcal{U} = \{U_{\alpha} | \alpha \in \Delta\}$ be a p-open cover of X with $|\Delta| < \omega_1$, so by (ii), for all $x \in X$, \mathcal{U} has a parallel refinement \mathcal{S} such that x meets $< \omega_0$ of $\mathcal{S} \cap \tau_i, i = 1$ or 2. For each $S \in \mathcal{S}$, let U(S) be the first U_{α} containing S. Let

$$G_{\alpha} = \bigcup_{U(S)=U_{\alpha}} S,$$

clearly $G_{\alpha} \in \tau_1 \cup \tau_2, G_{\alpha} \subseteq U_{\alpha}$. Let $\mathcal{G} = \{G_{\alpha} | \alpha \in \Delta\}$ is a p-point- ω_0 cover of X which is p-open cover (if necessary add $U \in \mathcal{U} \cap \tau_i, i = 1$ or 2), finally the result comes from Lemma 3.2.

 $(iii) \to (iv)$ Let $\mathcal{F} = \{F_k | k \in \Delta | |\Delta| < \omega_1\}$ be a sequence of p-closed family such that $F_{k+1} \subseteq F_k$, and $\bigcap_{k \in \Delta} F_k = \phi$.

Let

$$U_k^i = X - F_k^i,$$

and

$$U_k^j = X - F_k^j,$$

where F_k^i is a τ_i -closed and F_k^j is a τ_j -closed for $i \neq j; i, j = 1, 2$. Then $\mathcal{U} = \{U_k^i | k \in \Delta\} \cup \{U_k^j | k \in \Delta\}$ is a p-open cover of X, so by (iii) there exists $V_k, W_k \in \mathcal{V} \cap \tau_i$, where \mathcal{V} is a parallel refinement with $\overline{V_k}^{\tau_i} \cup \overline{W_k}^{\tau_j} \subseteq U_k^i$, we may assume that $U_k^i \in \mathcal{U} \cap \tau_i$. Let

$$G_k^i = X - \overline{V_k}^{\tau_i}$$
 and $G_k^j = X - \overline{W_k}^{\tau_j}$,

then

$$\mathcal{G} = \{G_k^i | k \in \Delta\} \cup \{G_k^j | k \in \Delta\},\$$

is a p-open family and $\bigcap_{k\in\Delta}(G_k^i\cup G_k^j)=\phi$ with $\overline{V_k}^{\tau_i}\subseteq U_k^i$ and $\overline{W_k}^{\tau_i}\subseteq U_k^i$, hence $X-U_k^i\subseteq X-\overline{V_k}^{\tau_i}$ and $X-U_k^i\subseteq X-\overline{W_k}^{\tau_j}$, so we have $F_k^i\subseteq G_k^i$ and $F_k^i\subseteq G_k^j$ for $i\neq j; i,j=1,2$.

 $(iv) \to (v)$ Let $\mathcal{F} = \{F_k, k \in \Delta\}$ be a decreasing sequence of p- closed subset of X with $\bigcap_{k \in \Delta} F_k = \phi$, by (iv) there exists a sequence $\mathcal{G} = \{G_k, k \in \Delta\}$ of p-open subsets of X with $\bigcap_{k \in \Delta} G_k = \phi$, such that $F_k^j \subseteq G_k^i$ and $F_k^j \subseteq G_k^j$ where $G_k^i \in \mathcal{G} \cap \tau_i$, $G_k^j \in \mathcal{G} \cap \tau_j$, and F_k^j is τ_j- closed in $\mathcal{F}, i \neq j; i, j = 1, 2$. So by Urysohn's lemma there exists a continuous function $f_k^j : (X, \tau_j) \to (\mathbb{R}, \tau_u)$ such that $f_k^j(F_k^j) = \{0\}$ and $f_k^j(X - G_k^j) = \{1\}$, and by [5] there exists a p-continuous function $g_k^i : (X, \tau_1, \tau_2) \to (\mathbb{R}, \tau_l, \tau_r)$ such that $g_k^i(F_k^j) = \{0\}$ and $g_k^i(X - G_k^i) = \{1\}$.

Let

$$M_{km}^j = \{x | f_k^j(x) < \frac{1}{m}\},\$$

and

$$N_{km}^{i} = \{x | g_k^i(x) < \frac{1}{m}\},\$$

then

$$M_k^j = \bigcap_m M_{km}^j = \{x | f_k^j(x) = 0\},\,$$

and

$$N_k^i = \bigcap_m N_{km}^i = \{x | g_k^i(x) = 0\}.$$

Now $\mathcal{A} = \{M_k^j | k \in \Delta\} \cup \{N_k^i | k \in \Delta\}$ is a p-closed $(G_{\delta}-)$ set with $\bigcap_{k \in \Delta} A_k = \phi$ and $F_k \subseteq A_k$.

 $(v) \to (i)$ Let $\mathcal{U} = \{U_{\alpha} | \alpha \in \Delta, |\Delta| < \omega_1\}$ be a p-open cover of X.

Let

$$F_{\alpha}^{i} = X - \bigcup_{\beta \leq \alpha} (U_{\beta} \cap \tau_{i}),$$

and

$$F_{\alpha}^{j} = X - \bigcup_{\beta \leq \alpha} (U_{\beta} \cap \tau_{j}),$$

then

$$F_{\alpha+1}^i \subseteq F_{\alpha}^i$$

and

$$F_{\alpha+1}^j \subseteq F_{\alpha}^j$$
.

Let

$$\mathcal{F} = \{ F_{\alpha}^{i} | \alpha \in \Delta \} \cup \{ F_{\alpha}^{j} | \alpha \in \Delta \},$$

then

$$F_{\alpha+1}^i \cup F_{\alpha+1}^j \subseteq F_{\alpha}^i \cup F_{\alpha}^j,$$

and

$$\bigcap_{\alpha \in \Lambda} F_{\alpha} = \phi,$$

by (v) there exists a sequence \mathcal{A} of p-closed G_{δ} -set with $\bigcap_{\alpha \in \Delta} A_{\alpha} = \phi$, and $F_{\alpha}^{i} \subseteq A_{\alpha}$, $F_{\alpha}^{j} \subseteq A_{\alpha}$, but $X - A_{\alpha}$ is a F_{α} -set, let $X - A_{\alpha} = \bigcup_{\alpha} B_{\alpha\gamma}$ where each $B_{\alpha\gamma}$ is a τ_{i} -closed and the family $\mathcal{B} = \{B_{\alpha\gamma} | \alpha \in \Delta\}$ is a p-closed family, since X is normal p-normal space, we can assume that

$$B_{\alpha\gamma} \subseteq int_{\tau_i}(B_{\alpha,\gamma+1})$$

and

$$B_{\alpha\gamma} \subseteq int_{\tau_i}(B_{\alpha,\gamma+1}),$$

then

$$X - A_{\alpha} \subseteq \bigcup_{\alpha} int_{\tau_i}(B_{\alpha\gamma}),$$

and

$$X - A_{\alpha} \subseteq \bigcup_{\alpha} int_{\tau_j}(B_{\alpha\gamma}),$$

$$B_{\alpha\gamma} \subseteq X - A_{\alpha} \subseteq X - (F_{\alpha}^{i} \cup F_{\alpha}^{j}) = \bigcup_{\beta \leq \alpha} U_{\beta}.$$

Let $x \in X$ and U_{α} be the first element in \mathcal{U} such that $x \in U_{\alpha}$, so we have two cases:

- (i) $U_{\alpha} \in \tau_i$, let $V_{\alpha}^i = U_{\alpha} \bigcup_{\alpha < \gamma} B_{\alpha\gamma}$ and each $B_{\alpha\gamma}$ is a τ_i -closed.
- (ii) $U_{\alpha} \in \tau_{j}$, let $V_{\alpha}^{j} = U_{\alpha} \bigcup_{\alpha < \gamma} B_{\alpha\gamma}$ and each $B_{\alpha\gamma}$ is a τ_{j} closed for $i \neq j; i, j = 1, 2$.

Now in each case for $\alpha < \gamma$

$$B_{\alpha\gamma} \subseteq \bigcup_{k < \alpha} U_k \subseteq \bigcup_{k < \gamma} U_k,$$

$$U_{\alpha} - \bigcup_{k < \gamma} U_k \subseteq V_{\gamma}^i \cup V_{\gamma}^j,$$

hence

$$\mathcal{V} = \{V_{\alpha}^{i} | \alpha \in \Delta\} \cup \{V_{\alpha}^{j} | \alpha \in \Delta\}$$

is a p-open parallel refinement cover of X. Finally, we need to show that \mathcal{V} is p- locally $-\omega_0$, let $x \in X$, there exists $\alpha \in \Delta$ such that $x \notin A_{\alpha}$, so for some $k, x \in int_{\tau_i}(B_{\alpha k})$ and $x \in int_{\tau_i}(B_{\alpha k})$.

If $\gamma > \alpha$ and $\gamma > k$,

$$int_{\tau_i}(B_{\alpha k}) \subseteq B_{\alpha \gamma}$$

and

$$int_{\tau_i}(B_{\alpha k}) \subseteq B_{\alpha \gamma},$$

with

$$int_{\tau_i}(B_{\alpha k}) \cap V_{\alpha}^i = \phi,$$

and

$$int_{\tau_j}(B_{\alpha k}) \cap V_{\alpha}^j = \phi.$$

So $int_{\tau_i}(B_{\alpha k})$ is a τ_i – open set contains x and meets $<\omega_0$ of $\mathcal{V} \cap \tau_i$, $int_{\tau_j}(B_{\alpha k})$ is a τ_j – open set contains x and meets $<\omega_0$ of $\mathcal{V} \cap \tau_j$ for $i \neq j; i, j = 1, 2$, hence \mathcal{V} is p-locally $-\omega_0$, therefore X is $p - [\omega_0, \omega_1]$ -paracompact space.

4. A product theorem

Theorem 4.1. Let $X = (X, \tau_1, \tau_2)$ be a $s - [w_0, \infty]$ – compact space and $Y = (Y, \sigma_1, \sigma_2)$ is a $p - [\omega_0, \omega_1]$ – paracompact space. Then $X \times Y = (X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ is $p - [\omega_0, \omega_1]$ – paracompact space.

Proof. Let $\mathcal{U} = \{U_{\alpha} | \alpha \in \Delta \mid \Delta \mid < \omega_1\}$ be a p- open cover of $X \times Y$. Let $x \in X$ and $V_{\alpha} = \{x \in X \mid x \times Y \subseteq \bigcup_{\beta \leq \alpha} U_{\alpha}\}$, for $x \in V_{\alpha}$ and $y \in Y$ with $(x, y) \in x \times Y$ there exists a set $O_x \times Q_x$ with $x \in O_x \in \tau_1 \cup \tau_2$ and $y \in Q_x \in \sigma_1 \cup \sigma_2$. Let $\mathcal{Q} = \{Q_x \mid x \in X\}$, then \mathcal{Q} is a $\tau_1 \tau_2-$ open cover of Y and hence \mathcal{Q} has a $\tau_1 \tau_2-$ open subcover with cardinality $< \omega_0$, say $Q_{x_1}, Q_{x_2}, \cdots, Q_{x_n}$.

Let

$$O_1 = \bigcap_m (O_m \cap \tau_1)$$

and

$$O_2 = \bigcap_m (O_m \cap \tau_2)$$
 for $1 \le m \le n$.

Let $O = O_1 \cup O_2$, then $x \in O \subseteq \tau_1 \cup \tau_1$ and

$$O \times Y \subseteq \bigcup_{\beta < \alpha} U_{\alpha}$$

and

$$O \times Y \subseteq \bigcup_{\beta \le \alpha} U_{\alpha},$$

$$x \times Y \subseteq O \times Y \subseteq \bigcup_{\beta \le \alpha} U_{\alpha}$$

and hence $V_{\alpha} \in \tau_1 \cup \tau_1$. Now $\mathcal{V} = \{V_{\gamma} | \gamma \in \Gamma, |\Gamma| < \omega_1\}, (\text{ if } \mathcal{V} \cap \tau_i = \phi, \text{ add } \Gamma)$ $U_{\alpha} \in \mathcal{U} \cap \tau_i$ for some $\alpha \in \Delta, i = 1, 2$). Since for $x \in X, x \times Y$ is $s - [\omega_0, \infty]$ compact, so it contains in $<\omega_0$ of \mathcal{U} and hence $x\in V_\alpha$, so \mathcal{V} has a p- locally $-\omega_0$ p- open parallel refinement say \mathcal{B} . For $B \in \mathcal{B}$, let $V_B \in \mathcal{V}$ be the first $V_{\gamma} \in \mathcal{V}$ such that $B \subseteq V_B$ and $G_{\gamma} = \bigcup_{V_B = V_{\gamma}} B$, then $G_{\gamma} \in \tau_1 \cup \tau_2$ and $\mathcal{G} = \{G_{\gamma} | \gamma \in \Gamma\}$ is a p-locally $-\omega_0$ p- open cover of X. If $\alpha \leq \gamma$, let $W_{\gamma\beta} = (G_{\gamma} \times Y) \cap U_{\alpha}$, and $W = \{W_{\gamma\beta} | \alpha \leq \gamma\}$. For $(x,y) \in X \times Y$, $x \in G_{\gamma}$ for some $\gamma \in \Gamma$ and $(x,y) \in G_{\gamma} \times Y$, also $x \in G_{\gamma} \subseteq V_{\gamma}$, $(x,y) \in X \times Y \subseteq \bigcup_{\beta \leq \alpha} U_{\alpha}$, so $(x,y) \in W_{\gamma\beta}$, therefore W is a p- open cover of $X \times Y$. Again for $(\bar{x},y) \in X \times Y$, $x \in K$ where $K \in \tau_i$ which meets $< \omega_0$ of $\mathcal{G} \cap \tau_j$ for $i \neq j; i, j = 1, 2$. Now $K \times Y$ meets $<\omega_0$ of $(\mathcal{G}\cap\tau_i)\cap Y$, hence W is p- locally $-\omega_0$ p- open parallel refinement of \mathcal{U} , hence $X \times Y$ is $p - [\omega_0, \omega_1]$ -paracompact space.

Acknowledgment

The authors are grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.

References

- [1] Fuad A. Abushaheen and Hasan Z. Hdeib, On [a,b] compactness in bitopological spaces, International Journal of Pure and Applied Mathematics, 110 (2016), 519-535.
- [2] M.C. Datta, Projective bitopological spaces, J. Austral Math. Soc., 13 (1972), 327-334.
- [3] R. Engelking, General topology, revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [4] P. Fletcher et. al., The compaison of topologies, Duke Math. J., 36 (1969), 325-331.
- [5] J.C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- [6] L. Reilly, et. al., On bitopological compactness, J. Londan Math. Soc., 9, 518-522.

Accepted: 9.11.2018